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Surface shape resonances of ridges on a thin film
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Abstract. The spectrum of surface shape resonances associated with a finite number of ridges on one
interface of an otherwise plane film is calculated. The frequencies are obtained numerically by solving the
homogeneous integral equations which describe the electrostatic field in the vicinity of a surface defect.
The calculations are performed for a surface with ridges with Gaussian, Lorentzian and sinusoidal profiles.
The results show a strong dependence of the localized plasmon frequencies on the surface profile, on the
distance between the ridges, and on the thickness of the film.

PACS. 73.20.Mf Collective excitations (including plasmons and other charge density excitations) –
78.66.Bz Metals and metallic alloys

1 Introduction

The study of plasmons propagating on surfaces that ex-
hibit roughness or periodic structures has attracted a
great deal of attention due to possible applications in
diffractive and integrated optics [1–3]. A particularly in-
teresting property of non-planar surfaces is that they can
support localized electrostatic or electromagnetic modes
that depend on the geometric shape of the surface, known
as surface shape resonances (SSR). The electrostatic (elec-
tromagnetic) SSR are solutions of Laplace’s (Maxwell’s)
equations, that are localized around surface defects. These
localized modes have become an important research sub-
ject because their excitation on the surface of a dielec-
tric leads to a strong enhancement of the electric field in
the vicinity of the defect. As a result, these fields can en-
hance the electromagnetic response of the surface. Thus,
the excitation of SSR is on the basis of phenomena such as
the enhanced Raman scattering of molecules adsorbed on
rough metal surfaces [4,5] and the enhanced second har-
monic generation in the reflection of light from a metallic
interface (see Ref. [6]). Rendell and Scalapino [7] suggested
also that the existence of such localized plasmons could ex-
plain light emission in metal-oxide-metal structures. In a
recent paper, López-Rios et al. [8] reported the first ex-
perimental evidence of the excitation of electromagnetic
surface shape resonances for optical frequencies.

The shape of the surface defect has a significant in-
fluence on the spectrum of the localized modes. From
a theoretical point of view, the defects can usually be
treated as protuberances or indentations which can be
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described mathematically by a profile function. In rela-
tion to this, several protuberance profiles have been stud-
ied, e.g., hemispherical [9], spherical [7], and spheroidal
profiles [10]. A single ridge with a one-dimensional
Lorentzian profile on a plane surface was investigated
by Malshukov and Shekhmamet’ev [11]. Maradudin and
Visscher [12] obtained the homogeneous integral equa-
tions satisfied by the Fourier transformation of the elec-
trostatic potentials for the case of single protuberances
with a general profile. For a ridge described by an even,
one-dimensional function, Maradudin [13] showed that the
frequencies of the resonances were roughly symmetrically
positioned around the frequency of surface plasmons on a
plane surface.

Most of the previous SSR studies were performed by
assuming the existence of just one protuberance or de-
pression on the surface of plane metallic films. This as-
sumption might be valid for corrugated surfaces in which
the distance between individual defects can be considered
large as compared to the typical range of the SSR fields.
For smaller distances, however, the spectrum was expected
to broaden into bands as a result of the proximity of the
defects. The consequences of this interaction become evi-
dent in the case of the surface enhanced Raman scatter-
ing, which experimental work has shown to be a collective
effect appearing in surfaces with closely interacting struc-
tures. The effect of this interaction on the spectrum of
SSR was studied recently by Pereira et al. [14] for multi-
ple ridges in a semi-infinite medium.

In the present paper, we investigate the influence of the
finite thickness of the dielectric medium on the frequen-
cies of SSR, for thin films with several one-dimensional
defects on one of the interfaces. This influence can be
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Fig. 1. Schematic representation of the film geometry.

important if one is trying to relate theoretical models
with experimental results, since most of the experimental
techniques employed to investigate the properties surface
electromagnetic excitations are performed on thin sam-
ples. As in reference [14], the surface defects where mod-
eled as ridges with Gaussian, Lorentzian, or sinusoidal
profiles. The results were obtained using a generalization
for multiple, identical ridges, of the method developed by
Maradudin and Visscher [12] for calculating SSR frequen-
cies for a metal film with a real dielectric function of the
free electron type, which is deposited on a dielectric sub-
strate.

2 Model

The system under consideration is illustrated in Figure 1.
The film’s interface with the vacuum has a profile is de-
scribed by a one-dimensional function x3 = ` + ζ(x1),
whereas a planar interface with a substrate is character-
ized by an isotropic, real dielectric function εc. The dielec-
tric slab is characterized by a frequency-dependent dielec-
tric function ε(ω) in the region 0 < x3 < ζ(x‖) + `, with
x‖ = x1e1 + x2e2, where e1 and e2 are unit vectors in
the x and y directions, respectively. Since we do not in-
clude retardation effects, the resonance frequencies of the
SSR are determined by solving Laplace’s equation. The
electrostatic potential solutions of the Laplace equation
in the three regions can be written in the form of Fourier
integrals as:

φ(I)(ω,x) =
1

(2π)2

∫
a(ω,k)eik.x‖−|k|x3d2k,

x3 > ζ(x‖)max
+ `, (1a)

φ(II)(ω,x) =
1

(2π)2

∫
[b(ω,k)e|k|x3 + c(ω,k)e−|k|x3 ]eik.x‖d2k,

0 < x3 < ζ(x‖)min
+ `, (1b)

φ(III)(ω,x) =
1

(2π)2

∫
d(ω,k)eik.x‖+|k|x3d2k,

x3 < 0, (1c)

where k = k1e1 + k2e2, and x = x‖ + x3e3. The Fourier
coefficients of the electrostatic field are: a(ω, k) in the

vacuum, b(ω, k) and c(ω, k) in the film, and d(ω, k) in
the substrate.

Taking into account the Rayleigh hypothesis, that the
potentials given by equations (1a–1c) can be used into the
selvedge region, the boundary conditions are given by

φ(I)(ω,x)|x3=ζ(x‖)+` = φ(II)(ω,x)|x3=ζ(x‖)+`, (2a)

∂φ(I)(ω,x)
∂n

|x3=ζ(x‖)+` = ε(ω)
∂φ(II)(ω,x)

∂n
|x3=ζ(x‖), (2b)

for the vacuum-film interface, and:

φ(II)(ω,x)|x3=0 = φ(III)(ω,x)|x3=0, (2c)

∂φ(II)(ω,x)
∂n

|x3=0 = εc
∂φ(III)(ω,x)

∂n
|x3=0, (2d)

for the film-substrate interface. Substituting equations (1)
in equations (2), and using the method of Maradudin
and Visscher [12] for a one dimensional ridge described
by an even profile function ζ(x1), the coefficients a(ω, q),
b(ω, q), c(ω, q) vanish, and it can be shown that the coef-
ficient d(ω, q) satisfies the homogeneous integral equation(
−λ+

f−(ω)
f+(ω)

e−2p`

)
F (ω, p`) =

± 1
π

∫ ∞
0

J(p− q|p+ q)F (ω, q) q dq

− 1
π

∫ ∞
0

J(p+ q|p− q)f−(ω)
f+(ω)

e−2p`q F (ω, q)dq. (3)

We have used the definitions:

f±(ω) =
1
2

[
1± εc

εω

]
(4a)

epLd(ω, p) = F (ω, pL), (4b)

λ =
ε(ω) + 1
ε(ω)− 1

, (4c)

with the kernel

J(q ± p|q ∓ p)=
∫ ∞
−∞

e−(q±p)ζ(x1)−1
p± q e−i(q∓p)x1dx1. (4d)

The solvability condition of equation (3) yields the SSR
frequencies. Using a Gauss-Laguerre quadrature scheme∫ ∞

0

dy e−y f(y) =
N∑
j=1

wj f(yj), (5)

where wj (yj) are the weights (abscissas), and N the num-
ber of quadratures, equation (3) can be converted into a
matrix eigenvalue equation(
−λ+

f−(ω)
f+(ω)

e−2p`

)
F (ω, χi) =

N∑
j=1

Mij F (ω, χj), (6)
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with

Mij = χj eχj
4
R2

[
J(χi − χj |χi + χj)

− J(χi + χj |χi − χj)
f−(ω)
f+(ω)

e−4χjD/R

]
wj , (7)

with q = 2χi/R, p = 2χj/R, and R is the characteristic
width of the profile function. To calculate the SSR fre-
quencies we need to solve the following equation:

det
[(
−λ+

f−(ω)
f+(ω)

e−2p`

)
δij − Mij

]
= 0, (8)

where the frequencies are restricted to the range:

ωp√
εc + 1

< ω <
ωp√

2
, (9)

since the non-perturbed system has no normal modes in
this region.

2.1 Single ridges

In order to study the influence of the profiles on the SSR
frequencies, we consider initially one isolated single ridge
described by three different profiles. The first surface pro-
file is defined by a Lorentzian function

ζ(x1) =
AR2/4

x2
1 +R2/4

, (10a)

where A represents the maximum height, and R is a char-
acteristic width, that will depend on the profile’s function.
In this case, the kernel J(q∓ p|q± p) of the homogeneous
integral is given by

J(ξ ∓ χ|ξ ± χ) = π
R

4

2

e−2(ξ±χ)
∞∑
n=1

(
A

R

)n
(−1)n

× (ξ ∓ χ)
n!

n−1

2n
gn−1[2(ξ ± χ)]

(n− 1)!
, (10b)

where

gn+1(z) = (2n+ 1)gn(z) + z2gn−1(z) (11)

with g0(z) = 1, g1(z) = z + 1. The second profile is de-
scribed by a Gaussian function

ζ(x1) = Ae−4x2
1/R

2
, (12a)

and the corresponding kernel J(q ∓ p|q ± p) is given by

J(ξ ∓ χ|ξ ± χ) =
R

4

2√
π
∞∑
n=1

(
A

R

)n (ξ ∓ χ)
n!

n−1

× 2n√
n

exp
[
− (ξ ± χ)2

4n

]
. (12b)

The third surface profile we consider is the following sinu-
soidal function

ζ(x1) =

8>>><
>>>:

0 x1 < −L/2,
1

2
A

�
1 + cos

�
2π

L
x1

��
−L/2 < x1 < +L/2,

0 x1 > +L/2,

(13a)

withA and L being the height and the period, respectively.
In this case J(q ∓ p|q ± p) is given by

J(ξ∓χ|ξ ± χ) =
L2

4

∞∑
n=1

(A
L

)n (ξ ∓ χ)
n!

n−1

×
2n∑
l=0

(−1)n+l+1
(2n
l

) sin(ξ ± χ)
[π(n− l)− (ξ ± χ)]

, (13b)

with ξ = Lq/2 and χ = Lp/2 in this case.

2.2 Multiple ridges

To analyze the behaviour of the SSR frequencies when
the surface of the dielectric film has multiple ridges, we
consider m ridges with a sinusoidal profile separated by
a distance D. First, we consider a single sinusoidal ridge
ζ1(x1) defined in an interval −(L+D)/2 < x1 < (L+D)/2
as
ζ1(x1) =8>>><
>>>:

0 −(L + D)/2 < x1 < −L/2
1

2
A

�
1 + cos

�
2π

L
x1

��
−L/2 < x1 < L/2

0 L/2 < x1 < (L + D)/2.

(14)

Consequently, the ensemble of m unidimensional sinu-
soidal ridges ζm(x1) is described by

see equation (15a) below

It can be shown that, for such a profile, the corresponding
kernel can be written as

Jm(ξ ∓ χ|ξ ± χ) = Um−1{ cos [ (χ± ξ)(1 +D/L) ]}
× J1(ξ ∓ χ|ξ ± χ), (15b)

where Um−1{ cos [ (χ± ξ)(1 +D/L) ] } is a second kind
Chebyshev polynomial [15], and J1(ξ ∓ χ|ξ ± χ) is given
by equation (12b).

ζm(x1) =


0, −m(L + D)/2 < x1∑m−1

k=0 ζ1
[
x1 + (m − 2k − 1)

(
1 +

D

L

)
L

2

]
, −m(L + D)/2 < x1 < m(L + D)/2

0, m(L + D)/2 < x1.

(15a)
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Fig. 2. ESSR frequencies of an isolated ridge as a function of
the ratio `/R for a Gaussian (dotted-dashed curve), Lorentzian
(solid curve) and sinusoidal (dashed curve) profile.

3 Numerical results

We have to calculate the roots of equation (8) to obtain
the SSR frequencies for the profiles we have described in
Section 2. The degree of convergence depends on the sur-
face profile, on the thickness of the film, and on the dis-
tance between the ridges in the case of multiple ridges.
These calculations are performed for a metallic film with
the free-electron-like dielectric function ε(ω) = 1− ω2

p/ω
2

where ωp is the plasma frequency. First, we calculate the
SSR associated with an isolated ridge. In solving equa-
tion (8), we find that the dimension N of the matrix Mij ,
equation (7), which corresponds to the number of points
used in the Gauss-Laguerre quadrature, depends on the
the ratio A/R (or A/L for the sinusoidal profile function),
and on the number of terms nj used in the summations of
equations (10b, 12b, 13b, 15b), for each profile function.
The Rayleigh hypothesis restricts the accuracy of the re-
sults to low values of A/R or A/L. In order to compare
the resonance frequencies with the same ratio A/R for the
first two profiles and A/L for the sinusoidal case, we con-
sider the expansion of equations (10a, 12a, 13a) up to the
second order, and take R = 2L/π for the sinusoidal case.
For the sinusoidal profile, we are able to achieve conver-
gence for ratios A/L up to 0.15, which is of the same order
of results obtained in previous calculations of the disper-
sion curves of surface waves propagating across sinusoidal
gratings [16].

Figure 2 shows the SSR frequencies for the Gaussian
(dot-dashed curve), Lorentzian (solid curve) and sinu-
soidal (dashed curve) profiles, as a function of the dimen-
sionless ratio `/R (` being the thickness of the film). For
these calculations, we have taken A/R = 0.1 and εc = 3,
and we look for frequencies in the region limited by equa-
tion (9). Although the frequency values for each profile
are different, they display a strikingly similar behaviour as
the thickness of the film increases, with the lower branches
initially having a steep drop toward lower frequencies, fol-
lowed by a region where the dependence on `/R is roughly
linear. This indicates that, although the frequencies are
strongly dependent on the particular profile of the ridges,
the finite thickness of the medium causes a frequency shift
that is independent of the shape. Moreover, for films with
a very small ratio `/R the results for the Gaussian and
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Fig. 3. Frequencies of the ESSR as functions of A/L for a
sinusoidal profile with D = 0: (a) m = 1; (b) m = 2; and (c)
m = 3.

Lorentzian profiles become very similar. This can be ex-
plained by the fact that when R is large (for a fixed `)
the surface profile of both functions, equations (10a, 12a),
tend to the same form in the first approximation. One
can also observe that, for `/R higher than approximately
3.5, the SSR frequencies for all three profiles approach
the results obtained for a semi-infinite medium [14]. This
is an expected result since the substrate effects tend to
vanish when the film thickness increases. Maradudin and
Visscher [12] demonstrated analytically that the film re-
sults approach the semi-infinite case when `→∞.

The SSR frequencies for one, two, and three sinusoidal
ridges are shown in Figure 3 as a function of the aspect ra-
tioA/L, withD = 0. The magnitude of all frequencies falls
as A/L increases, a behaviour consistent with previous
results for isolated defects on a film [12]. As in the semi-
infinite case, it can observed that when more ridges are
added to the system, there is a corresponding increase in
the number of branches. In the present case, this seems to
be a result of splitting of the low frequency branches. This
effect becomes more evident in Figure 4 where the biggest
values of ∆ω are plotted as a function of the number of
ridges, with ∆ω = ω − ωp/

√
2, ωp = 3.699 × 10−15 s−1.

Again, there is an increase of the number of branches as
more surface features are added to the system. Therefore,
it is reasonable to assume that for a sufficiently large num-
ber of ridges, the splitting of the SSR branches will result
in the formation of frequency bands.

Figure 5 shows the behaviour of the lowest resonance
frequencies for two ridges with a sinusoidal profile, as a
function of D/L. Here we used A/L = 0.06 and `/L = 1.
When D ≈ L, the frequencies converge to the values
obtained for a system with a single ridge. Therefore,
one can conclude that SSR associated with ridges whose
separation is greater than L can be correctly described
by modeling the surface as containing isolated ridges.
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Fig. 4. The first pairs of resonance frequencies (1 and 2) of an
isolated ridge as a function of the number of ridges m, consid-
ering A/L = 0.1, `/L = 1, and εc = 3.
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Fig. 5. The largest values of the resonance frequencies for
two ridges with a sinusoidal profile as a function of D/L, with
A/L = 0.06.

This is consistent with previous calculations for enhance-
ment effects on surfaces with semycylinders [17], where it
was found that the interaction between the objects be-
comes important for distances less than approximately
three times the radius of individual semycylinders. The
fact that the effects due to the proximity of the ridges
tend to disappear at relatively short distances can be
viewed as a consequence of the strong localization of the
SSR modes, since the electromagnetic oscillations are lo-
calized near the ridges, and the electric field amplitude de-
cays with increasing distance in the x1 direction from the
defects [11].

4 Conclusions

In conclusion, we have obtained the SSR frequencies as-
sociated with several one-dimensional defects (ridges) on
the vacuum interface of a thin metallic film deposited on
a plane dielectric substrate. This study extends previous
calculations where the system was assumed to have in-
finite thickness and just one defect on the surface. We
have shown that the finite thickness of the active medium
causes a substantial shift of the SSR frequencies when
compared with the results for the semi-infinite. The re-
sults obtained here can be important if one is trying to
relate theoretical models with experimental results, since
most of the experimental techniques employed to investi-
gate the properties of surface electromagnetic excitations
(e.g. attenuated total reflection spectroscopy [1], photon
scanning tunneling microscopy [18]) are performed on thin
samples.

In addition, the results have further indicated that a
semi-infinite model should give fairly accurate results for
defects on films with a ratio thickness/width greater than
3.5. It has also been shown that, as a consequence of the
localization of the SSR modes, a film with one-dimensional
defects separated by a distance of the order of their width
will behave effectively as a system with isolated ridges.
This can be particularly relevant if one is modeling a rough
surface as a plane containing a number of ridges, since
the spectrum of localized modes will depend sensitively
on the distance between the surface defects. We also have
shown that as in the semi-infinite case, the number of
frequency branches increases with the number of ridges,
and the results show evidence that the properties of a
grating on a film can be obtained with a relatively small
number of ridges.

From an experimental point of view, arrays of equally
spaced ridges or grooves on a surface can be created
by standard photolithographic techniques [8]. Another
method employs a direct-ablation technique and allows
the creation of sub-micron individual surface defects,
which can then have their sizes and shapes varied [18].

This work was supported by CNPq, Funcap, Capes and Finep,
Brazilian funding agencies.
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